Function of the NH2-terminal domain of the regulatory light chain on the regulation of smooth muscle myosin.
نویسندگان
چکیده
The role of the NH2-terminal domain of the 20,000-dalton light chain on the regulatory function of smooth muscle myosin was studied by exchanging it in myosin with various mutant forms. The 10 S to 6 S conformational transition as well as the thick filament formation were significantly influenced by the deletion or substitution of the amino acid residues at the NH2-terminal side of the phosphorylation site (Ser19). Whereas the deletion of Ser1-Thr10 did not significantly affect these functions, further deletion of Lys11-Arg16 completely abolished the formation of 10 S conformation and induced thick filament formation. Among the residues in this region, Arg13 and Arg16 were most important for these functions since substitution of these residues by Glu or Ala significantly altered these functions. Similar substitutions of Lys11 and Lys12 also stabilized the 6 S conformation and thick filament formation but less effectively. While the 6 S conformation was stabilized, the deletion of NH2-terminal residues did not activate the actin-activated ATPase activity. This suggests that stabilization of the 6 S conformation is not directly coupled with activation of actomyosin ATPase activity but rather a more defined conformational change around the phosphorylation site is necessary for activation. Such a change also influences the 6 S to 10 S conformation and, therefore, the filament formation. To support this notion, substitution of Lys11 and Lys12 by Glu-Glu inhibited the phosphorylation-induced activation of actomyosin ATPase activity.
منابع مشابه
The motor domain and the regulatory domain of myosin solely dictate enzymatic activity and phosphorylation-dependent regulation, respectively.
While the structures of skeletal and smooth muscle myosins are homologous, they differ functionally from each other in several respects, i.e., motor activities and regulation. To investigate the molecular basis for these differences, we have produced a skeletal/smooth chimeric myosin molecule and analyzed the motor activities and regulation of this myosin. The produced chimeric myosin is compos...
متن کاملStructural requirement of the regulatory light chain of smooth muscle myosin as a substrate for myosin light chain kinase.
The substrate structure required for skeletal and smooth muscle myosin light chain kinases (MLC kinase) was studied by using various mutant regulatory light chains of smooth muscle myosin. The deletion of the NH2-terminal 10 residues did not greatly affect the kinetic parameters of smooth MLC kinase; however, deletion of an additional 3 residues, Lys11-Arg13, prevented phosphorylation. In contr...
متن کاملProteomic analysis of muscle tissue from rainbow trout (Oncorhynchus mykiss) fed dietary β-glucan
The aim of this study was to examine the changes in muscle proteome of the rainbow trout fed dietary β-glucan. The experimental diets contained 0 (control), 0.1% and 0.2% β-1,3/1,6 yeast glucan. First, feeding larvae were fed to apparent satiation nine times per day with their respective diets over two months. The percentage of body weight gain and feed efficiency of fish fed 0.2% diet was sign...
متن کاملStructural and kinetic studies of phosphorylation-dependent regulation in smooth muscle myosin.
In this study, we have examined the mechanism of phosphorylation-dependent regulation in smooth muscle myosin through the use of structural and kinetic methodologies applied to several myosin fragments. Fluorescence anisotropy decay measurements demonstrate that regulatory light chain phosphorylation significantly reduces the rotational correlation time of regulatable myosin preparations, where...
متن کاملRestoration of phosphorylation-dependent regulation to the skeletal muscle myosin regulatory light chain.
Regulation of the ATPase activity of smooth and nonmuscle myosin II involves reversible phosphorylation of the regulatory light chain (RLC). The RLC from skeletal muscle myosin (skRLC) is unable to confer regulation (myosin is locked in an inactive state) to smooth muscle myosin when substituted for the endogenous smooth RLC (smRLC). Studies of chimeric light chains comprised of the N- or C-ter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 269 45 شماره
صفحات -
تاریخ انتشار 1994